Nox2-containing NADPH oxidase deficiency confers protection from hindlimb ischemia in conditions of increased oxidative stress.
نویسندگان
چکیده
OBJECTIVE Because Nox2-containing NADPH oxidase is a major source of ROS in the vasculature, we investigated its potential role for the modulation of ischemia-induced neovascularization in conditions of increased oxidative stress. METHODS AND RESULTS To mimic a clinical situation of increased oxidative stress, mice were exposed to cigarette smoke before and after the surgical induction of hindlimb ischemia. Nox2 expression and oxidative stress in ischemic tissues were significantly increased in wild-type mice, but not in mice deficient for the Nox2-containing NADPH oxidase (Nox2(-/-)). Nox2(-/-) mice demonstrated faster blood flow recovery, increased capillary density in ischemic muscles, and improved endothelial progenitor cell functional activities compared to Nox2(+/+) mice. In addition, Nox2 deficiency was associated with increased antioxidant and nitrite concentrations in plasma, together with a preserved expression of eNOS in ischemic tissues. In vitro, Nox2(-/-) endothelial cells exhibit resistance against superoxide induction and improved VEGF-dependent angiogenic activities compared to Nox2(+/+) endothelial cells. Importantly, the beneficial effects of Nox2 deficiency on neovascularization in vitro and in vivo were lost after treatment with the NO inhibitor L-NAME. CONCLUSIONS Nox2-containing NADPH oxidase deficiency protects against ischemia in conditions of increased oxidative stress. The mechanism involves improved neovascularization through a reduction of ROS formation, preserved activation of the VEGF/NO angiogenic pathway, and improved functional activities of endothelial progenitor cells.
منابع مشابه
Protection against vascular aging in Nox2-deficient mice: Impact on endothelial progenitor cells and reparative neovascularization.
BACKGROUND Aging is associated with increased oxidative stress levels and impaired neovascularization following ischemia. Because Nox2-containing NADPH oxidase is a major source of ROS in the vasculature, we investigated its potential role for the modulation of ischemia-induced neovascularization in the context of aging. METHODS AND RESULTS Hindlimb ischemia was surgically induced by femoral ...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملMitochondrial Regulation of NADPH Oxidase in Hindlimb Unweighting Rat Cerebral Arteries
Exposure to microgravity results in post-flight cardiovascular deconditioning and orthostatic intolerance in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been indicated in this process. To elucidate the mechanism for this condition, we investigated whether mitochondria regulated NADPH oxidase in hindlimb unweighting (HU) rat cerebral and mesenteric arteries. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2009